{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import sklearn.metrics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Read in labels and performance data:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Pneumonia | \n", "Atelectasis | \n", "Effusion | \n", "Pneumothorax | \n", "Infiltration | \n", "Cardiomegaly | \n", "Mass | \n", "Nodule | \n", "algorithm_output | \n", "
---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "1 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "
1 | \n", "1 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "1 | \n", "
2 | \n", "1 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "
3 | \n", "1 | \n", "1 | \n", "1 | \n", "0 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "1 | \n", "
4 | \n", "0 | \n", "1 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "